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Abstract—Vehicles are becoming powerful mobile sensors, and
vehicular networks provide a promising platform to support a
wide range of existing large-scale monitoring applications such
as road surface monitoring, and etc. In vehicular networks,
inter-vehicle contacts are scarce resources for data delivery.
This presents a major challenge for monitoring applications
with vehicular networks. By analyzing a large dataset of taxi
traces collected from around 2,600 taxis in Shanghai, China,
we reveal that there is strong correlation with data readings on
vehicles. Motivated by this important observation, we propose
a compressive sensing based approach called CSM to monitor
with vehicular networks. Two key issues must be addressed.
First, there is an intrinsic tradeoff between communication cost
and estimation accuracy. Second, guaranteed estimation accuracy
should be provided over the highly dynamic network. To address
the above issues, we first characterize the relationship between
estimation error (�2 error) and sparsity property of a dataset.
Then, we determine two critical parameters: the minimum
number of seeds and the minimum transmission hop length
for compressive measurements in the network. The selection
of the two parameters can reduce the communication cost
while guaranteeing the required estimation accuracy. Extensive
simulations based on real vehicular GPS traces collected in
Shanghai, China have been performed and results demonstrate
that CSM achieves much higher estimation accuracy at the same
communication cost compared with other alternative schemes.

Index Terms—Vehicular networks, monitoring, compressive
Sensing, routing, seed selection

I. INTRODUCTION

With the rapid deployment of inter-vehicle radio technolo-

gies such as dedicated short range communication (DSRC), it

has been practical to realize vehicle-to-vehicle and vehicle-to-

infrastructure communications, making vehicular networks a

reality. However, as vehicles may be distributed over a vast

area and move at a high speed, it is often difficult to find a

connected path between any two vehicles. We may have to

leverage the opportunity that vehicles meet with each other or

meet with Access Points (APs) deployed along the road for

relaying information in an opportunistic manner. We also call

such vehicular networks vehicular delay-tolerant networks.

Recently, more and more vehicles are equipped with var-

ious sensors, such as accelerometers, pollution sensors and

Global Positioning System (GPS) receivers. Thus, vehicles are

becoming powerful mobile sensors, and vehicular networks

provide a promising platform supporting a wide range of

existing large-scale monitoring applications, such as road

surface monitoring [1], urban monitoring [2] and etc. In this

paper we consider monitoring with vehicular networks. As

a motivating example shown in Fig. 1, each vehicle detects

road surface conditions and such readings are collected by a

monitoring center responsible for detecting defects of urban

roads in the city.

The main objective of a monitoring application is to achieve

high accuracy. A straightforward approach to monitoring with

vehicular networks is to have each vehicle to report its readings

independently to one of the APs by using multi-hop routing

algorithms [3] [4]. Although this approach may be able to

collect all the readings, there are several main defects. First,

in a vehicular network, a vehicle can only communicate with

another vehicle when they encounter with each other and such

Fig. 1. Motivating example for monitoring with vehicular networks: vehicles
running in the urban area of Shanghai, China. Each vehicle periodically detects
the road surface condition and a monitoring center wants to collect road
conditions collected by the vehicles. The vehicles can report their readings
to the road side access points (APs) by multi-hop transmissions, which then
relay the readings to the monitoring center.
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encounter opportunities may be scarce and should be well

utilized. This straightforward approach however introduces a

high communication overhead. Second, a complete round of

monitoring finishes only when each of the vehicle delivers its

reading to the APs. It will take a very long time. Thus, such

straightforward approach is inappropriate for monitoring with

vehicular networks.

To achieve better performance, we explore data readings

on vehicles in the real world, which actually exhibit some

interesting hidden structures. We mine a large dataset of

taxi traces collected from around 2,600 taxis in Shanghai,

China. In this dataset, we have recorded data readings from

the taxis, including instant speed and position with a time

granularity from 15 seconds to several minutes. The dataset

spans a duration of nearly 2 years. Through analyzing data

readings from these real datasets using entropy analysis, we

demonstrate that there is strong correlation with the data

readings.

Motivated by this important observation, we propose a

compressive sensing based approach called CSM to monitor

with vehicular networks. Compressive sensing is an effective

technique for recovering data with sparsely sampled data [5].

With CSM, only a small number of vehicles are selected as

seeds to start compressive measurements. As the measurement

messages propagate across the network, they coalesce new

readings when vehicles encounter with each other. Vehicles

offload measurements at APs as they pass by. After receiving

the measurement data from APs, the monitoring center can

recover the readings by applying the compressive sensing

technique on the set of measurement data.

Two key issues must be addressed for this compressive

sensing based approach. First, there is an intrinsic tradeoff

between communication cost and estimation accuracy. To

save the precious communication opportunities in vehicular

networks, it is highly desirable to use a smaller number of

seeds and a short propagation hop length for compressive

measurements. However, the performance of data estimation

may also be degraded. Second, monitoring applications usually

pose a rigid requirement on the estimation error. It is difficult

to guarantee the estimation accuracy given the highly dynamic

nature of vehicular networks.

In [6], Li et al. propose to recover average speeds of

road segments with sparsely sampled data from vehicles with

a compressive sensing based technique. However, in their

approach the sensed data on vehicles are transmitted over

the cellular network. The inter-vehicle communication is not

considered. Some techniques based on compressive sensing

have been proposed for collecting data from sensor networks.

In [7], [8], [9] some compressive sensing-based methods have

been proposed for data collection in sensor networks. In [10],

the validity of the compressive sensing theorem for data

collection in sensor networks is rigorously justified. These

existing techniques for sensor networks cannot be applied

in monitoring with vehicular networks. They usually rely on

a fixed routing structure which is unavailable in vehicular

networks that are highly mobile and link availability is scarce.

Furthermore, a main focus of sensor networks is energy

efficiency which is not a problem for vehicular networks.

To address the challenges mentioned above, we first charac-

terize the relationship between estimation error (�2 error) and

sparsity property of a dataset. Then, by modeling a vehicular

network as a contact graph, next, we determine two critical

parameters: the minimum number of seeds and the minimum

transmission hop length for compressive measurements in

the network. The selection of the two parameters can re-

duce the communication cost while guaranteeing the required

estimation accuracy. Finally, extensive simulations based on

real vehicular GPS traces collected in Shanghai, China have

been performed and results demonstrate the efficacy of our

approach.

We have made the following intellectual contributions:

• By analyzing a large dataset of real data readings on

vehicles using entropy analysis, we reveal that there

is strong correlation with data readings from different

vehicles.

• We propose an approach called CSM based on compres-

sive sensing for monitoring with mobile vehicles. CSM

guarantees the data estimation accuracy while signifi-

cantly reducing the communication cost.

• We analytically derive the expected delay and the com-

munication cost for compressive sensing based data col-

lection from a vehicular network.

• Trace-driven experiments have been conducted, which

confirm that the required accuracy is guaranteed and

significant reduction of communication cost is achieved.

The remainder of the paper will be organized as follows.

Section II gives the preliminary on the network model, empiri-

cal study and compressive sensing. The detailed design of CSM

is described in Section III. Section IV discusses evaluation

results. In Section V, we review related work. Finally, we

conclude the paper in Section VI.

II. PRELIMINARY

In this section we first present the network model, then

introduce our empirical study with real vehicular data readings,

and finally introduce the preliminary of compressive sensing.

A. System Model

There are a set C of n vehicles which can communicate with

each other as they encounter, i.e., within the communication

range, C = {c1, c2, · · · , cn}. A set A of wireless access

points (APs) are deployed in the road network. The APs are

connected through a wired network, such as the Internet. A

vehicle can also communicate with an AP when they are

within the communication range.

Each vehicle periodically generates data readings about the

vehicle itself or the surrounding environment. Let the reading

of vehicle ci be denoted by xi. We refer to a message as a

packet carrying data readings. A monitoring center connects

to all the APs and wants to retrieve all data readings of the

vehicles in the network.
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B. Empirical Study with Real Traces

We next reveal the existence of correlation with data read-

ings from vehicles by analyzing the dataset of real traces. The

traces were collected from around 2,600 taxis in Shanghai,

China. Equipped with the Global Positioning System (GPS)

receiver, each taxi periodically reads information such as

speed, position, and occupancy. A record of the readings as

follows is saved. The traces span a duration of over TWO

Vehicle ID Speed Longitude Latitude Occupancy Timestamp

years, from January, 2006 to December, 2007. Thus, the traces

provide a real dataset of data readings on vehicles.

We use entropy analysis on the real datasets of speeds and

positions. Before presenting entropy analysis, we give some

notations for the datasets. We denote the time instants by T =
{t1, t2, · · · , tm}. Then, the data readings for a vehicle, ci, at

the j-th time slot tj is xi,j . For all vehicles, we have a matrix

representing all readings

X =

⎡
⎢⎢⎢⎣

x1,1, x1,2, · · · , x1,m

x2,1, x2,2, · · · , x2,m

...
...

. . .
...

xn,1, xn,2, · · · , xn,m

⎤
⎥⎥⎥⎦ , (1)

where the i-th row is a sequence of data readings for ci, and

the j-th column refers to the set of readings at time tj .

We next show the calculation of the marginal entropy of

data readings of a given vehicle. For each vehicle ci, we

take Xi = {xi,1, xi,2, · · · , xi,m} as a series of observations

for its readings. Assume there are only li different states

{oi,1, oi,2, , · · · , oi,li}. Therefore, the entropy of each Xi can

be calculated by

H(Xi) =

li∑
k=1

Pr(oi,k)× log2
1

Pr(oi,k)
. (2)

We can get the probability of oi,k in Xi by taking statistics.

Suppose that oi,k appears σk times in set Xi, and Xi has a

length m. The probability of oi,k is

Pr(oi,k) =
σk

m
. (3)

After getting the marginal entropy, we show the calculation

of the conditional entropy of X. Given Xi1, the conditional

entropy of Xi can be calculated as,

H(Xi|Xi1) = H(Xi1, Xi)−H(Xi1). (4)

In order to calculate the joint entropy H(Xi1, Xi), we

construct a joint set from two reading sets Xi1 and Xi

X ′
i =

⎡
⎢⎢⎢⎣

(xi1,1, xi,1)
(xi1,2, xi,2)

...
...

(xi1,n, xi,n)

⎤
⎥⎥⎥⎦ , (5)

where Xi1 is the readings of another vehicle ci1 different

from ci. Assume there are only li different states in the

form of (oi1,k, oi,k). We count the number of occurrences

of (oi1,k, oi,k) as σk; the probability of (oi1,k, oi,k) can be

calculated by Eq. (3); and the joint entropy is

H(Xi1, Xi)

=

n∑
k=1

Pr((oi1,k, oi,k))× log2
1

Pr((oi1,k, oi,k))
. (6)

We can further generalize Eq. (4) as,

H(Xi|Xi1, Xi2, · · · )

= H(· · · , Xi2, Xi1, Xi)−H(Xi1, Xi2, · · · ). (7)

In Fig. 2, we plot the CDF of marginal entropy and condi-

tional entropy of speed readings and position readings, respec-

tively. We can find that the conditional entropy is much smaller

than the marginal entropy for both speeds and positions.

This demonstrates that these data readings from vehicles are

strongly correlated. In addition, we can see position readings

have a larger marginal entropy than speed readings, while

position readings have a smaller conditional entropy than

speed readings. This indicates that position readings are more

correlated than speed readings.

C. Compressive Sensing

We give some preliminary of compressive sensing. The

compressive sensing can produce a good approximation of an

original n-dimensional vector with only m samples, where

m < n. More importantly, data loss tolerance is an innate

ability of compressive sensing.

According to the compressive sensing theory [5], a K-

sparse dataset (with K number of non-zero coefficients) can

be fully recovered by solving a programming optimization

problem with non-adaptive linear projections which preserve

the structure of the sparse dataset. Suppose we have the

original data readings, an n-by-1 vector �x. It has the K-sparse

representation �d in some domain with representation basis Ψ,

�d = Ψ�x (8)

Furthermore, if K � n, then �d can be fully recovered by a

small number of measurements using an m-by-n (m < n)
compressive sampling basis Φ, with

�y = ΦΨ−1�d, (9)

where �y is acquired from �y = Φ�x.

Eq. (9) illustrates the core of the compressive sensing

technique. By solving the following �1-norm optimization

problem,

(L1) min
d
||�d||�1 subject to �y = Θ�d, (10)

where the �1-norm of �d, ||�d||�1 =
∑n

i |di|, and Θ = ΦΨ−1.

We can find out an n-by-1 vector �d′ and �x′ = Ψ−1�d′, which

is a good approximation to the original �x.
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Fig. 3. An example for explaining the basic idea of the CSM approach. There are one AP (in triangle), two seed vehicles (in circle with dark shade) and
three other regular vehicles (in circle with light shade).

III. DESIGN OF CSM

In this section we present the detailed design of CSM.

A. Basic Idea

In this section we give the basic idea of our approach

using compressive sensing for data collection with a vehicular

network. We illustrate the basic idea in Fig. 3. In the example,

there are 5 vehicles {ci|1 ≤ i ≤ 5} and one AP. And each

vehicle ci has one reading xi. The AP wants to obtain all

readings of the five vehicles.

With CSM, a small number of vehicles are selected as seed

vehicles. The rest of the vehicles are regular vehicles. Vehicle

c1 and c2 are such two seed vehicles, and other vehicles

including c3, c4, and c5 are regular vehicles. Initially, a seed

vehicle generates a message containing its own data reading

multiplied by a random coefficient. Let’s take c1 for example.

It generates message y1 = φ1x1, where x1 is the data reading

of c1 and φ1 is a random coefficient.

Upon encountering with other regular vehicles, a seed

vehicle forwards the message to the regular vehicle. Upon

receiving a message, a regular vehicle combines its own

reading with the received data by taking the weighted sum.

For example, c1 forwards its message containing y1 to c3. On

receiving y1 from c1, c3 combines x3 and y1 and generates

y3.

Eventually, the AP receives a set of combined data, or mea-

surements. It then recovers the readings using the compressive

sensing technique as introduced in Section II-C. For example,

the AP receives two measurements y4 and y5 from c4 and c5,

respectively. It then tries to recover the readings x1-x5 based

on compressive sensing.

B. Key Issues

Given a fixed number of measurements, the estimation error

of compressive sensing is strongly dependent on the sparsity

of the dataset of readings. The estimation error is smaller if the

sparsity of the dataset, K , is smaller. For a dataset in the real

world, however, the sparsity is relatively large. To fully recover

the dataset without error requires an extremely large number

of measurements. This is impractical for vehicular networks

where inter-vehicle contacts are scarce resources.

Many monitoring applications can tolerate a certain rela-

tively small estimation error defined by ε0. The objective of

CSM is to provide a guaranteed estimation accuracy while

minimizing the communication cost.

We have to address two key issues in the design of CSM as

follows:

• Key issue 1: What is the minimum number of seeds to

ensure the estimation accuracy?

• Key issue 2: What is the minimum number of transmis-

sion hops that a measurement should be forwarded in

order to coalesce a sufficient number of data readings?

In this section we address the key issues. First, we char-

acterize the relationship between the relative estimation error

and the sparsity property of data readings. Then, we determine

the minimum number of seeds and the minimum number of

hops required for measurements.

C. Characterizing Estimation Error

To tolerate estimation error, we optimistically underestimate

the real sparsity K of the dataset by ignoring the small tail of

the dataset represented in another domain. Let us call it virtual

sparsity, denoted by K ′. We characterize the relationship be-

tween the estimation error and the virtual sparsity. Essentially,

a smaller virtual sparsity requires fewer measurements but

results in a higher estimation error.

We consider the �2 error of the estimation, ||�x′−�x||�2 , which

is the �2 norm of (�x′ − �x) given by
(∑n

i |x
′
i − xi|

2
)1/2

. Let

E(X) denote this estimation �2 error, and we have

E(X) = ||�x′ − �x||�2 ≤ C0K
′− 1

2

n∑
i

|di − dK′ i|, (11)
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Fig. 2. CDFs of marginal entropy and conditional entropy: (a) Speed readings
and (b) Position readings.

where C0 is a constant coefficient, and �d is the representation

of �x in some transform domain. This upper bound is given

in [11], and �dK′ is the vector with the exact locations and

amplitudes of the K ′-largest entities of �d.

Usually, there are few real datasets that are strictly K-

sparse so we adopt the following method to approximate a

coefficients vector. We sort the coefficients in the descending

order denoted as |θ1| ≥ |θ2| ≥ · · · ≥ |θn|. Then, we keep the

largest K ′ coefficients and discard all other entities. We have

shown that data readings are redundant with entropy analy-

sis. Furthermore, the magnitude of its transform coefficients

decays in power law, i.e., the ith largest coefficient satisfies,

|θi| ≤ Ri−1/p, (12)

where R is a constant and 0 < p < 2.

To verify this, we project a bunch of real speed readings

in the traces into the discrete Fourier domain. We sort all the

Fourier coefficients in descending order, calculate the mean

value in each position, and finally normalize all the coeffi-

cients. Notice that we plot on the logarithmic coordinates,

thus depicting the fast decreasing property of the speed values.
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Fig. 4. Normalized coefficient values of a dataset of real taxi speeds in the
traces, with auxiliary curves x

−1/p. This shows that a dataset of real data
readings approximately follows the power law.

In Fig. 4, we show the normalized coefficients of a real taxi

speed dataset. We can find that the dataset of vehicle speeds

approximately follows the power law.

In fact, the power law is an empirical description of the

sparsity of a dataset. Theoretically, we have

||�θ||p =
(∑

|θi|
p
)1/p

≤ R, (13)

to formulate the constraint on sparsity, which is generally

obeyed on natural classes. �p norm with small p is the natural

mathematical measure of sparsity, and as p decreases below 1,

more and more sparsity is required. Also, from this viewpoint,

an �p constraint based on p = 2 requires no sparsity at all.

With the K ′-term approximation and constraints on sparsity

we can reduce the �2 error in Eq. (11) to

||�x′ − �x||�2 ≤ αpRK ′1/2−1/p. (14)

Here p is the inherent property of a specific dataset, and αp

and R are constants determined by p.

The �2 error bound given in Eq. (14) claims that the es-

timation error can be determined by the selecting the K ′-

strongest term. The larger K ′ we use, the smaller the �2 error

is. Meanwhile, a larger overhead is incurred.

We use the relative �2 error ε as our optimization objective,

and

ε =
||�x′ − �x||�2
||�x||�2

. (15)

The ||�x||�2 is the property of a specific dataset, just as given

in Eq. (13).

D. Determining m and h

With the previous characterization of the relationship be-

tween relative estimation error and virtual sparsity, we next

determine two important parameters, i.e., m and h, represent-

ing the number of measurements and the number of nonzeros.

These two parameters directly depict the properties of the

compressive sensing sample matrix. Therefore, by analyzing
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the property of the sample matrix, we can determine m and

h.

According to compressive sensing theory, Φ needs to pre-

serve the Restricted Isometry Property (RIP), and the original

dataset can then be recovered from m compressed measure-

ments. We give the definition of the RIP [12]: let F be an

m-by-n random sample matrix. If F has RIP constants δs for

every x ∈ {x ∈ R
n : ||x||0 ≤ s} satisfying

δs � argmin
δ

(1− δ)||x||22 ≤ ||Fx||22 ≤ (1 + δ)||x||22, (16)

then F is said to satisfy the RIP.

The number δs measures how close the vectors in F are to

behaving like an orthonormal system. The parameter m tells

how many of rows Φ has, and h is the number of nonzeros in

each row. They jointly determine whether Φ satisfies the RIP.

Number of measurements m. It is a well-known result in

compressive sensing theory that a K-sparse dataset can be

recovered from Φ with m = O(K logN) measurements.

Specifically, m should satisfy the following condition [13]:

m ≥ c · μ2(Φ,Ψ) ·K · logN, (17)

where μ(Φ,Ψ) is the coherence between sampling basis Φ and

transform basis Ψ.

Number of nonzeros h. According to [14], we know that a

sparse random sample matrix Φ is also sufficient to recover

the data readings. A peak-to-total energy condition needs to

be satisfied, which is
||�d||∞

||�d||2
≤ ω. This peak-to-total condition

bounds the largest component of the data readings.

We define the sparsity of Φ as the number of nonzeros in

each row, which is exactly h. The sparsity of Φ will produce an

extra factor of 1/pω2 in the number of measurements, where

p = h/n refers to the probability of an entity in Φ to be

non-zero. It turns out that as h becomes smaller, we need a

larger m to compensate the information loss. For data that is

K-sparse in Fourier transform, if h = log2 n, then 1/pω2 =
O(1), in which case there is no side effect on the number

of measurements m. If h = logn, there is an extra factor of

1/pω2 = O(log n) in m. In our approach we set the h =
log2 n to achieve a better performance.

E. Determining Number of Seeds

With the optimal number of measurements and the optimal

number of nonzeros, we next determine the minimum number

of seeds. Since the success of a message forwarding from a

vehicle to the APs in the vehicular network is probabilistic,

we have to determine what is the minimum number of seeds

required to ensure the APs can collect m measurements with

a time constraint.

To facilitate our analysis, we model the vehicular network

as a contact graph G = {V,E} (V = C). An edge ei,j ∈ E
between two vehicles ci and cj represents the contact process.

As shown by previous studies [15] [16], the inter-contact time

of two vehicles is exponentially distributed. Thus, the contact

process is a Poisson process. Let λi,j denote the contact rate

between ci and cj .

TABLE I
SUMMARY OF TRACES

Parameter Value

Date Feb. 19, 2007
Duration (hours) 24

Granularity (seconds) 15 - 60
Total number of contacts 685,000

The minimum number of seeds is given by the following

theorem.

Theorem 1. The minimum number of seeds for time constraint

D is 1

σ ×m, where σ =
e−λt,t+DD(λt,t+DD)h

h!
.

Proof: Noticing that in the inter-contact time model, the

encounter event model between vehicles is just the same as

that between vehicle and AP. Thus, we use node to represent

both vehicle and AP without lose of generality.

For a node tuple (np, nq), the inter contact time τ(np, nq)
is exponentially distributed with rate λp,q . Thus, for a specific

packet forwarding h hops within time D is a Poisson Process.

We use N(t+Δt) to denote the number of encounters during

time interval Δt. We have

Pr(N(t+D)−N(t) = h) =
e−λt,t+DD(λt,t+DD)h

h!
, (18)

where λt,t+D =
∫ t+D

t λ(t)dt for the rate parameter may

change over time.

Eq. (18) gives us the probability that one message can be

finally collected at the APs, i.e., the delivery ratio. Let σ
denote the delivery ratio. Then, we can derive the number

of measurements needed at the very beginning is 1

σm.

F. Determining Number of Hops

It is easy to find that the number of nonzeros h in each row

of the sample matrix Φ actually indicates the number of data

readings that a measurement should include, i.e. the number of

hops. Essentially, it is the number of vehicles that are involved

in one measurement. Thus, the message from a seed vehicle

initially takes a random walk. As the number of hops of the

measurement message equals to h, it should be quickly moved

to one of the APs. To this end, a number of routing algorithms

designed to optimize the delivery delay can be used, such as

Delegation Forwarding [4], and etc.

IV. PERFORMANCE EVALUATION

In this section, we first present the methodology and exper-

imental setup, and then present evaluation results.

A. Methodology and Experimental Setup

To evaluate the performance of our approach, we have

performed simulations driven by real vehicular traces. In

simulation, a vehicle moves on the road network in Shanghai,

China, strictly following a trajectory recorded in the traces.

The traces that we have used for simulations is summarized

in Table I. The communication range is 150 meters.
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We use three datasets of readings. Two are from the real

readings included in the taxi traces, as introduced in Section II.

One synthetic dataset of readings is generated, which has a

sparsity of around 20. The three datasets of readings are called

SPEED, POSITION and SYNTHETIC, respectively.

We adopt comparative study, comparing our approach with

other alternative approaches. We divide the data collection task

into two phases. In the first phase, readings are forwarded to

the APs. In the second phase, data recovery is performed.

Therefore, we use two different schemes in each phase. In

total, there are four combinations, resulting in four approaches

for comparison.

• Delegation forwarding (DF). It forwards a packet only

to a node with higher probability of delivering the packet

to the destination. We implement it with statistical infor-

mation of encounters between vehicles from the traces.

• Spray and wait (SW). It forwards multiple copies of

each packet. Initially, a source node has a copy budget

of eight for each packet. Then, the relay node will spray

half of the budget to each encountered vehicle.

We use two representative estimation schemes to recover

readings of all vehicles.

• k-NN estimate (KNN). It computes the mean value

of the k nearest neighbors of the vehicle as its sensor

reading. Using the k-NN estimate, we can get a local

approximation, which fits the real case that the nearer

neighbors contribute to the estimates.

• Gaussian process regression (GP). It is also known as

Kriging, which is a geostatistical technique to interpolate

the value of a random field at unobserved locations from

observations of its value at nearby locations.

For fair comparison among different approaches, we first

run our approach and record the communication cost. Other

approaches can use the same communication cost to deliver

readings towards the APs. Readings successfully received by

the APs are then used for data recover.
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Fig. 6. Estimation error vs. number of vehicles (POSITION dataset).
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Fig. 7. Estimation error vs. number of vehicles (SPEED dataset).

B. Impact of Number of Vehicles

We examine the impact of the number of vehicles to the

data gathering performance, which can reflect the scalability

of our approach. We vary the vehicle numbers from 100 to

1, 000 at a step of 100. We set the number of APs as 80, and

the required maximum error as 20%. Parameters h and m are

determined according to the required maximum error and the

property of the vehicular network. Besides, in the spray and

wait routing algorithm, we set 8 copies for each packet. The

comparison of the five schemes for all three different datasets

of data readings is reported in Fig. 5, Fig. 6, and Fig. 7.

We can see that our compressive sensing based approach

consistently achieves much better estimation accuracy than

other schemes over a wide range of number of vehicles.

Importantly, our approach can successfully guarantee that

the achieved estimation error is smaller than the required

maximum error. With the SPEED dataset, for example, when

there are 600 vehicles in the network, the estimation error of

our approach is over 87.5% smaller than that of any other

schemes. In general cases, our approach has an estimation

a 30% higher estimation accuracy than that of SW+KNN
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Fig. 8. Estimation error vs. number of APs (IDEAL dataset).

and DF+KNN. With the SPEED dataset, we can also see

that as the number of vehicles becomes larger, the estimation

accuracy of our approach can noticeably be improved. This is

mainly because the needed number of hops h is not linearly

increasing with the number of vehicles. As the number of

vehicles increases, there are more chances for a measurement

to be collected.

C. Impact of Number of APs

We next study the impact of the number of APs in the

network. As shown in Theorem 1, we need more seeds

than the number of measurements to ensure that at least m
measurements can be collected. Increasing the number of

APs can increase σ, and hence to improve the data gathering

performance. In this scenario, we use 1, 000 vehicles with the

same error requirement 10%. We vary the number of APs

from 10 to 80. We report the comparison of the five schemes

in Fig. 8, Fig. 9, and Fig. 10.

We can see that our approach can achieve good data

gathering performance even with a small number of APs. As

the number of APs increases, with the same overhead, our

approach achieves a higher estimation accuracy. Notice that

with the SPEED dataset, the estimation accuracy degrades

largely when the number of APs is too small, e.g., 10 in

the simulation. This is because in this case the number of

collected measurements is too small, and hence the approach

fails to meet the estimation error requirement.

V. RELATED WORK

In this section we briefly review related work and highlight

the differences of our work from the related work.

A. Compressive Sensing in Mobile Networks

A few works have used compressive sensing in mobile

networks. In [17], a mobile cooperative network is tasked

with building a map of the spatial variations of a parameter of

interest. By using the compressive sensing they build a map

of the parameter with a small number of measurements. There

is a specific work on collecting OFDM channel information in
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Fig. 9. Estimation error vs. number of APs (POSITION dataset).

10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

Number of APs

E
st

im
a
ti
o
n

e
rr

o
r

 

 

CS

DF+KNN

SW+KNN

DF+GP

SW+GP

Fig. 10. Estimation error vs. number of APs (SPEED dataset).

[18], where a compressive sensing based channel estimation

technique exploiting the channel’s delay-Doppler sparsity is

proposed. In [6], Li et al. build a traffic sensing system with

probe vehicles for metropolitan scale traffic sensing, and an

efficient compressive sensing based algorithm is proposed for

finding the best estimate traffic condition matrix.

All these works do not consider the communication issue

when applying compressive sensing for data recover. In this

work we consider the reduction of communication cost in a

vehicular network where contacts are scarce.

B. Compressive Sensing in Static Networks

Compressive sensing is becoming a new paradigm for data

gathering in sensor networks for it can provide universal sam-

pling with decentralized simple encoding and low overhead.

In [7], a universal compressive wireless sensing scheme is

proposed, in which sensed data is measured by synchronized

amplitude-modulated analog transmissions to the fusion center

in a single hop network. In [8], Luo et al. present the complete

scheme to apply compressive sensing to data collection in

large scale sensor networks. The capacity gain brought by
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a compressive sensing scheme is validated by both analysis

and simulation results. Besides, it also discusses the different

method to sparsify the sensed data. In [10], a compressive

sensing based approach is designed for counting and posi-

tioning targets from multiple categories in sensor networks.

They rigorously justify the validity of the problem formulation

and propose a GMP algorithm to complement the recover

algorithms. In [19], the authors aim at minimizing the energy

consumption in data collection with compressive sensing and

formulates a mixed-integer programming for recovering.

The significant differences vehicular networks from sensor

networks, such as high node mobility and network connection

unavailability suggest that existing solutions for sensor net-

works are inapplicable to the problem studied in this paper.

C. Monitoring with Vehicular Networks

Vehicles as powerful mobile sensors can be used in various

ways. A good survey on urban vehicular sensing platforms

is offered in [20]. MobEye [21] is a protocol for vehicular

urban sensing, which opportunistically diffuses sensed data

summaries and creates indexes for querying of sensed data.

CarTel [22] a data management system proposed for querying

and collecting data from mobile vehicles, enables the applica-

tion development with data collected. VTrack [23] uses less

accurate sensors rather energy-hungry GPS for estimating road

traffic delay.

VI. CONCLUSION

In this paper we focus on monitoring with vehicular net-

works, in which vehicles act as powerful mobile sensors.

Scarce contacts in vehicular networks raise the main challenge

for efficient monitoring. Through analyzing datasets of real

vehicular data readings in the taxi traces in Shanghai, China,

we unveil the strong correlation in vehicular data readings.

Based on this observation, we have proposed CSM. To provide

the guarantee on estimation accuracy, we first characterize the

relationship between estimation error (�2 error) and sparsity

property of a dataset. Then, we determine the minimum

number of seeds and the transmission hop length for com-

pressive measurements in the network. The objective is to

reduce communication cost while guaranteeing the required

estimation accuracy. We analytically derive the expected delay

and the communication cost of our approach. Trace-driven

simulations based on real vehicular GPS traces show that CSM

successfully achieves the required estimation accuracy with

low communication cost.
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